

Laboratorio di Tecnologie dell'Informazione

Ing. Marco Bertini marco.bertini@unifi.it http://www.micc.unifi.it/bertini/

Resource Management

Memory, smart pointers and RAII

Resource management

- The most commonly used resource in C++ programs is memory
 - there are also file handles, mutexes, database connections, etc.
- It is important to release a resource after that it has been used

An example

```
class Vehicle { ... }; // root class of a hierarchy
Vehicle* createVehicle(); /* return a pointer to root
class but may create any other object in the hierarchy.
The caller MUST delete the returned object */
void f() {
   Vehicle* pV = createVehicle();
   //... use pV
   delete pV;
}
```


An example

```
class Vehicle { ... }; // root class of a hierarchy
Vehicle* createVehicle(); /* return a pointer to root
class but may create any other object in the hierarchy.
The caller MUST delete the returned object */
void f() {
 Vehicle* pV = createVehicle();
 //... use pV ,
                      If there's a premature
 delete pV;
                      return or an exception we
                      may never reach the
                      delete!
```


A solution

- Put the resource returned by createVehicle inside an object whose destructor automatically release the resource when control leaves f().
 - destructor calls are automatic
- With these objects that manage resources:
 - resources are acquired and immediately turned over to resource-managing objects (RAII)
 - these objects use their destructors to ensure that resources are released

Resource Acquisition Is Initialization

What is RAII

- This technique was invented by Stroustrup to deal with resource deallocation in C++ and to write exception-safe code: the only code that can be guaranteed to be executed after an exception is thrown are the destructors of objects residing on the stack.
- This technique allows to release resources before permitting exceptions to propagate (in order to avoid resource leaks)

What is RAII - cont.

- Resources are tied to the lifespan of suitable objects.
 - They are acquired during initialization, when there is no chance of them being used before they are available.
 - They are released with the destruction of the same objects, which is guaranteed to take place even in case of errors.

#include <cstdio> #include <stdexcept> // std::runtime_error RA example

```
#include <stdexcept> // std::runtime_error
class file {
public:
    file (const char* filename) : file_(std::fopen(filename, "w+")) {
        if (!file_) {
            throw std::runtime_error("file open failure");
    }
    ~file() {
        if (std::fclose(file_)) {
           // failed to flush latest changes.
           // handle it
    }
   void write (const char* str) {
        if (EOF == std::fputs(str, file_)) {
            throw std::runtime_error("file write failure");
    }
private:
    std::FILE* file_;
   // prevent copying and assignment; not implemented
    file (const file &);
    file & operator= (const file &);
```


RAII example #include <cstdio>

```
#include <stdexcept> // std::runtime_error
class file {
public:
    file (const char* filename) : file_(std::fopen(filename, "w+")) {
        if (!file_) {
            throw std::runtime_error("file open failure");
    }
    ~file() {
                                                 void example_usage() {
        if (std::fclose(file_)) {
                                                      // open file (acquire resource)
           // failed to flush latest changes.
                                                      file logfile("logfile.txt");
           // handle it
                                                      // continue using logfile ...
    }
   void write (const char* str) {
        if (EOF == std::fputs(str, file_)) {
            throw std::runtime_error("file write
                                                      // logfile goes out of scope
private:
    std::FILE* file_;
   // prevent copying and assignment; not implemented
    file (const file &);
    file & operator= (const file &);
```

logfile.write("hello logfile!"); // throw exceptions or return without // worrying about closing the log; // it is closed automatically when

Smart pointers

What is a smart pointer?

- In C++, smart pointers are classes that mimic, by means of operator overloading, the behaviour of traditional (raw) pointers, (e.g. dereferencing, assignment) while providing additional memory management algorithms.
- Old C++98 provided only auto_ptr<>, C++11 introduces many new smart pointers:
 - SHould start to use smart pointer whenever possible, and use "raw" pointers only when necessary

Raw vs. smart pointer

 With raw pointers the programmer is in charge with deleting them:

```
// Need to create the object to achieve some goal
MyObject* ptr = new MyObject();
ptr->DoSomething();// Use the object in some way.
delete ptr; // Destroy the object. Done with it.
// Wait, what if DoSomething() raises an exception....
```

 With smart pointers there is need to create the object, but its destruction is up to the policy defined by the smart pointer

C++11 smart pointers

- shared_ptr: implements shared ownership. Any number of these smart pointers jointly own the object. The owned object is destroyed only when its last owning smart pointer is destroyed.
- Weak_ptr: doesn't own an object at all, and so plays no role in when or whether the object gets deleted. Rather, a weak_ptr merely observes objects being managed by shared_ptrs, and provides facilities for determining whether the observed object still exists or not. C++11's weak_ptrs are used with shared_ptrs.
- unique_ptr: implements unique ownership only one smart pointer owns the object at a time; when the owning smart pointer is destroyed, then the owned object is automatically destroyed.
- Just use: #include <memory>

shared_ptr

shared_ptr

- std::shared_ptr represents reference-counted ownership of a pointer. Each copy of the same shared_ptr owns the same pointer. That pointer will only be freed if all instances of the shared_ptr in the program are destroyed.
- Can be used in STL containers: the copied shared_ptr will increase reference count

shared_ptr - example

```
#include <iostream>
#include <memory>
using namespace std;
class Car {
public:
  Car(int eng=500) : engine(eng) {}
  void turnOn() {engineOn=true; cout <<</pre>
"Engine on\n";}
  void turnOff() {engineOn=false; cout
<< "Engine off\n";}</pre>
  int getEngine() {return engine;}
private:
  int engine;
  bool engineOn {false};
};
```

```
int main(int argc, char *argv[]) {
  std::shared_ptr<Car> p1=make_shared<Car>(1400);
  // you can use also:
  // std::shared_ptr<Car> p1(new Car(1400));
  std::shared_ptr<Car> p2 = p1; //Both now own
the memory.
  // call methods of the shared object
  (*p1).turn0n();
  p2->turnOff();
  // call methods of the smart pointer
  cout << p2.use_count() << endl;</pre>
  p1.reset(); //Memory still exists, due to p2.
  cout << "Engine: " << p2->getEngine() << endl;</pre>
  p2.reset(); //Deletes the memory, since no one
else owns the memory.
```


shared_ptr - example

```
#include <iostream>
#include <memory>
```

- Two references to the same object
- •Counts the number of treferences
- •Eliminates one of the references

```
int main(int argc, char *argv[]) {
  std::shared_ptr<Car> p1=make_shared<Car>(1400);
  // you can use also:
  // std::shared_ptr<Car> p1(new Car(1400));
  std::shared_ptr<Car> p2 = p1; //Both now own
the memory.
  // call methods of the shared object
  (*p1).turn0n();
  p2->turnOff();
  // call methods of the smart pointer
  cout << p2.use_count() << endl;</pre>
  p1.reset(); //Memory still exists, due to p2.
  cout << "Engine: " << p2->getEngine() << endl;</pre>
  p2.reset(); //Deletes the memory, since no one
else owns the memory.
```


shared_ptr - example

```
#include <iostream>
#include <memory>
```

- Two references to the same object
- •Counts the number of treferences
- •Eliminates one of the references

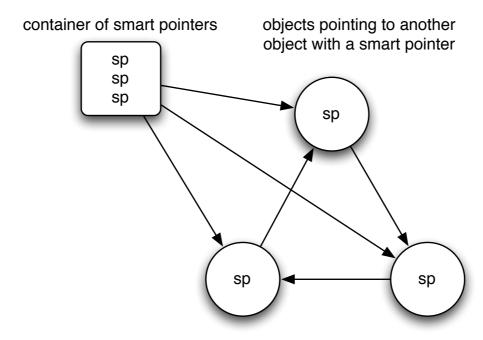
```
int main(int argc, char *argv[]) {
  std::shared_ptr<Car> p1=make_shared<Car>(1400);
  // you can use also:
  // std::shared_ptr<Car> p1(new Car(1400));
  std::shared_ptr<Car> p2 = p1; //Both now own
the memory.
  // call methods of the shared object
  (*p1).turn0n();
  p2->turnOff();
  // call methods of the smart pointer
  cout << p2.use_count() << endl;</pre>
  p1.reset(); //Memory still exists, due to p2.
  cout << "Engine: " << p2->getEngine() << endl;</pre>
  p2.reset(); //Deletes the memory, since no one
```

Remind to use the compiler switches to activate C++II, like -std=c++11 -stdlib=libc++

shared_ptr+STL - example

```
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
#include <memory>
using namespace std;
class Song {
public:
   Song(string name, string t) : artist(name),
title(t) {}
   string artist, title;
};
int main(int argc, char *argv∏) {
   shared_ptr<Sona> p1 = make_shared<Sona>("Bob
Dylan", "The Times They Are A Changing");
   shared_ptr<Song> p2 = make_shared<Song>("Aretha
Franklin", "Bridge Over Troubled Water");
   shared_ptr<Song> p3 = make_shared<Song>("Francesco")
Guccini", "Il vecchio e il bambino");
   vector<shared_ptr<Song>> v;
   v.push_back(p1);
   v.push_back(p2);
   v.push_back(p3);
```

```
vector<shared_ptr<Song>> v2;
   // see slides on lambda functions...
   remove_copy_if(v.begin(), v.end(),
back_inserter(v2), [] (shared_ptr<Song> s)
       return s->artist.compare("Francesco Guccini")
== 0;
   });
   for_each(v2.begin(), v2.end(), [] (shared_ptr<Song>
s)
   {
       cout << s->artist << ": " << s->title << endl;</pre>
   });
   // see slides on lambda functions...
   v.pop_back();
   cout << p1->artist << ": " << p1.use_count() <<</pre>
endl:
   cout << p2->artist << ": " << p2.use_count() <<</pre>
endl:
   cout << p3->artist << ": " << p3.use_count() <<</pre>
endl;
```



shared_ptr+STL - example

```
#include <iostream>
#include <string>
#include <algorithm>
                                            containers of pointers
#include <vector>
                                      Α
#include <memory>
                                     ptr
using namespace std;
                                     ptr
                                     ptr
class Song {
public:
   Song(string name, string t)
title(t) {}
   string artist, title;
};
int main(int argc, char *argv[
   shared_ptr<Song> p1 = make_
                                                      X2
                                         X1
Dylan", "The Times They Are A
   shared_ptr<Song> p2 = make_
Franklin", "Bridge Over Troubl.
   shared_ptr<Song> p3 = make_shared<Song>("Francesco")
Guccini", "Il vecchio e il bambino");
   vector<shared_ptr<Song>> v;
   v.push_back(p1);
   v.push_back(p2);
   v.push_back(p3);
```

```
// see slides on lambda functions...
  v.pop_back();
  cout << p1->artist << ": " << p1.use_count() <<
endl;
  cout << p2->artist << ": " << p2.use_count() <<
endl;
  cout << p3->artist << ": " << p3.use_count() <<
endl;
}</pre>
```

shared_ptr:problems

 A problem with reference-counted smart pointers is that if there is a ring, or cycle, of objects that have smart pointers to each other, they keep each other "alive" - they won't get deleted even if no other objects are pointing to them from "outside" of the ring.

shared_ptr:problems - example

```
class B;
class A {
public:
   A( ) : m_sptrB(nullptr) { };
   ~A( ) {
    cout<<" A is destroyed"<<endl;</pre>
   shared_ptr<B> m_sptrB;
};
class B {
public:
   B( ) : m_sptrA(nullptr) { };
   ~B( ) {
     cout<<" B is destroyed"<<endl;</pre>
   shared_ptr<A> m_sptrA;
};
```

```
void main( ) {
  shared_ptr<B> sptrB( new B );
  shared_ptr<A> sptrA( new A );
  sptrB->m_sptrA = sptrA;
  sptrA->m_sptrB = sptrB;
}
```


shared_ptr:problems - example

```
class B;
class A {
public:
   A( ) : m_sptrB(nullptr) { };
   ~A( ) {
    cout<<" A is destroyed"<<endl;</pre>
    shared_ptr<B> m_sptrB;
};
class B {
public:
   B( ) : m_sptrA(nullptr) { };
   ~B( ) {
     cout<<" B is destroyed"<<endl;</pre>
   shared_ptr<A> m_sptrA;
};
```

```
Reference count

shared_ptr<B> sptrB( new B )

shared_ptr<A> sptrA( new A )

sptrB->m_sptrA = sptrA

Ref count of sptrA -> 2

sptrA->m_sptrB = sptrB

Ref count of sptrB -> 2

main ends -> sptrA goes out of scope

main ends -> sptrB goes out of scope

Ref count of sptrB -> 1

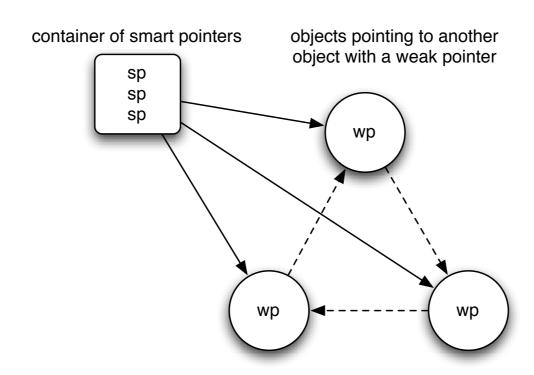
Ref count of sptrA -> 1
```

```
void main() {
  shared_ptr<B> sptrB( new B );
  shared_ptr<A> sptrA( new A );
  sptrB->m_sptrA = sptrA;
  sptrA->m_sptrB = sptrB;
}
```


weak_ptr

weak_ptr: helping shared_ptr

- std::weak_ptr:a weak pointer provides sharing semantics and not owning semantics.
- This means a weak pointer can share a resource held by a shared_ptr.
 - So to create a weak pointer, somebody should already own the resource which is nothing but a shared pointer.
 - To break up cycles, weak_ptr can be used to access the stored object. The stored object will be deleted if the only references to the object are weak_ptr references.
- weak_ptr therefore does not ensure that the object will continue to exist, but it can ask for the resource.



weak_ptr: how to use it

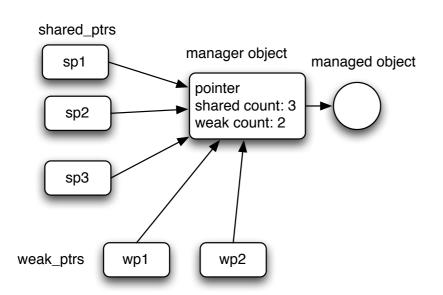
- A weak pointer does not allow normal interfaces supported by a
 pointer, like calling *, ->. Because it is not the owner of the
 resource and hence it does not give any chance for the programmer
 to mishandle it.
- Create a Shared_ptr out of a weak _ptr and use it. Because this makes sure that the resource won't be destroyed while using by incrementing the strong reference count.
 - As the reference count is incremented, it is sure that the count will be at least I till you complete using the shared_ptr created out of the weak_ptr. Otherwise what may happen is while using the weak_ptr, the resource held by the shared_ptr goes out of scope and the memory is released which creates chaos.
- To get a Shared_ptr from a weak_ptr call lock() or directly casting the weak_ptr to shared_ptr.

weak_ptr and shared_ptr

- If the container of smart pointers is emptied, the three objects in the ring will get automatically deleted because no other smart pointers are pointing to them; like raw pointers, the weak pointers don't keep the pointed-to object "alive".
- The cycle problem is solved. But unlike raw pointers, the weak pointers "know"
 whether the pointed-to object is still there or not and can be interrogated about
 it, making them much more useful than a simple raw pointer would be.

shared_ptrs

manager object
managed object



weak_ptr:example

```
#include <iostream>
#include <memory>
using namespace std;
int main() {
  std::shared_ptr<int> p1(new int(5));
  std::weak\_ptr<int> wp1 = p1; //p1 owns the memory.
  { // scope of p2
    std::shared_ptr<int> p2 = wp1.lock(); //Now p1 and p2 own the memory.
    if(p2) //Always check to see if the memory still exists
      //Do something with p2
  } //p2 is destroyed. Memory is owned by p1.
  p1.reset(); //Memory is deleted.
  std::shared_ptr<int> p3 = wp1.lock(); //Memory is gone, so we get an empty shared_ptr.
  if(p3)
    //Will not execute this.
```


weak_ptr: how it works

shared_ptr creates the manager object that contains a pointer to the managed object. The manager object counts the references to the managed object

- Whenever a shared_ptr is destroyed, or reassigned to point to a different object, the shared_ptr destructor
 or assignment operator decrements the shared count.
- Similarly, destroying or reassigning a weak_ptr will decrement the weak count.
- When the shared count reaches zero, the shared_ptr destructor deletes the managed object and sets the pointer to 0.
- If the weak count is also zero, then the manager object is deleted also, and nothing remains.
- But if the weak count is greater than zero, the manager object is kept. If the weak count is decremented to zero, and the shared count is also zero, the weak_ptr destructor deletes the manager object.
- Thus the managed object stays around as long as there are shared_ptrs pointing to it, and the manager object stays around as long as there are either shared_ptrs or weak_ptrs referring to it.

no silver bullet

- You can only use these smart pointers to refer to objects allocated with new and that can be deleted with delete. No pointing to objects on the function call stack!
- If you want to get the full benefit of smart pointers, your code should avoid using raw pointers to refer to the same objects; otherwise it is too easy to have problems with dangling pointers or double deletions.
 - Leave the built-in pointers inside the smart pointers and use only the smart pointers.
- You must ensure that there is only one manager object for each managed object. You
 do this by writing your code so that when an object is first created, it is immediately
 given to a shared_ptr to manage:

```
void main( ) {
  int* p = new int;
  shared_ptr<int> sptr1( p);
  shared_ptr<int> sptr2( p );
}
```

Crashes as soon as Sptr2 goes out of scope...
p was destroyed when Sptr1 went out of scope!

unique_ptr

unique_ptr

- Exclusive ownership semantics, i.e., at any point of time, the resource is owned by only one unique_ptr.When unique_ptr goes out of scope, the resource is released.
- Solves the problem of transfer of ownership that are present in the (deprecated) auto_ptr
 - copy constructor and assignment operator are declared as private
- Can be used in STL containers and algorithms

unique_ptr vs. auto_ptr

- Consider unique_ptr an improved version of auto_ptr. It has an almost identical interface:
- #include <utility>
 using namespace std;
 unique_ptr<int> up1; //default construction
 unique_ptr<int> up2(new int(9)); //initialize with pointer
 *up2 = 23; //dereference
 up2.reset(); //reset
- The main difference between auto_ptr and unique_ptr is visible in move operations. While auto_ptr sometimes disguises move operations as copy-operations, unique_ptr will not let you use copy semantics when you're actually moving an Ivalue unique_ptr:

unique_ptr +STL

- You can fill a Standard Container with unique_ptrs that own objects, and the ownership then effectively resides in the container.
- If you erase an item in the container, you are destroying the unique_ptr, which will then delete the object it is pointing to.

```
std::vector<unique_ptr<Thing>> v;
...
if(v[3]) // check that v[3] still owns an object
v[3]->foo();!// tell object pointed to by v[3] to foo
```


unique_ptr and RAII

Reconsider the f() function using unique_ptr:

```
void f() {
  std::unique_ptr<Vehicle>pV(createVehicle());
  // use pV as before...
```

} /* the magic happens here: automatically
deletes pV via the destructor of unique_ptr,
called because it's going out of scope */

unique_ptr: another example

 In general here's how to rewrite unsafe code in safe code:

```
// Original code
void f() {
   T* pt( new T );
   /*...more code...*/
   delete pt;
}
```

```
//Safe code, with auto_ptr
void f() {
  unique_ptr<T> pt( new T );
  /*...more code...*/
} /* pt's destructor is called
as it goes out of scope, and
the object is deleted
automatically */
```


Which smart pointer should we use?

Some guidelines

- It purely depends upon how you want to own a resource?
- If shared ownership is needed then go for shared_ptr, otherwise unique_ptr (i.e. unique_ptr is your default choice).
- If cyclic references are unavoidable in shared ownership, use Weak_ptr to give one or more of the owners a weak reference to another shared_ptr.

- The Boost libraries provide a set of alternative smart pointers
 - many have been selected for introduction in C++11... use the Boost library if your compiler still does not support C++11 smart pointers
 - designed to complement auto_ptr

- Four of the Boost smart pointers:
 - scoped_ptr defined in <boost/scoped_ptr.hpp>
 Simple sole ownership of single objects. Non-copyable.
 - scoped_array defined in <boost/scoped_array.hpp>
 Simple sole ownership of arrays. Non-copyable.
 - shared_ptr defined in <boost/shared_ptr.hpp>
 Object ownership shared among multiple pointers. std::shared_ptr represents reference counted ownership of a pointer. Each copy of the same shared_ptr owns the same pointer. That pointer will only be freed if all instances of the shared_ptr in the program are destroyed.
 - weak_ptr defined in <boost/weak_ptr.hpp>
 Non-owning observers of an object owned by shared_ptr. It is designed for use with shared_ptr.

- Four of the Boost smart pointers:
 - scoped_ptr defined in <boost/scoped_ptr.hpp>
 Simple sole ownership of single objects. Non-copyable
 - scoped_array defined in <boost/scoped_array.hpp>
 Simple sole ownership of arrays. Non-copyable.
- Similar to unique_ptr (but no transfer of ownership)

- shared_ptr defined in <boost/shared_ptr.hpp>
 Object ownership shared among multiple pointers. std::shared_ptr represents reference counted ownership of a pointer. Each copy of the same shared_ptr owns the same pointer. That pointer will only be freed if all instances of the shared_ptr in the program are destroyed.
- weak_ptr defined in <boost/weak_ptr.hpp>
 Non-owning observers of an object owned by shared_ptr. It is designed for use with shared_ptr.

- Four of the Boost smart pointers:
 - scoped_ptr defined in <boost/scoped_ptr.hpp>
 Simple sole ownership of single objects. Non-copyable
 - scoped_array defined in <boost/scoped_array.hpp>
 Simple sole ownership of arrays. Non-copyable.
- Similar to unique_ptr (but no transfer of ownership)

- shared_ptr defined in <boost/shared_ptr.hpp>
 Object ownership shared among multiple pointers. std::shared_ptr represents reference counted ownership of a pointer. Each copy of the same shared_ptr owns the same pointer. That pointer will only be freed if all instances of the shared_ptr in the program are destroyed.

 Included in C++||
- weak_ptr defined in <boost/weak_ptr.hpp>
 Non-owning observers of an object owned by shared_ptr. It is designed for use with shared_ptr.

auto_ptr

deprecate | 'depri kāt | verb [with obj.]

1 express disapproval of: (as adj. deprecating) : he sniffed in a deprecating way.

auto_ptr

- auto_ptr is a pointer-like object (a smart pointer) whose destructor automatically calls delete on what it points to
 - it's in the C++ standard library:#include <memory>
 - auto_ptr has been deprecated in C++II:
 use Boost or the new C++II smart pointers

auto_ptr:an example

Reconsider the f() function using auto_ptr:

```
void f() {
   std::auto_ptr<Vehicle> pV(createVehicle());
   // use pV as before...
```

} /* the magic happens here: automatically
deletes pV via the destructor of auto_ptr,
called because it's going out of scope */

auto_ptr:another example

 In general here's how to rewrite unsafe code in safe code:

```
// Original code
void f() {
   T* pt( new T );
   /*...more code...*/
   delete pt;
}
```

```
//Safe code, with auto_ptr
void f() {
   auto_ptr<T> pt( new T );
   /*...more code...*/
} /* pt's destructor is called
as it goes out of scope, and
the object is deleted
automatically */
```


auto_ptr characteristics

- Since auto_ptr automatically deletes what it points to when it is destroyed, there should not be two auto_ptr pointing to an object
 - or the object may be deleted twice: it's an undefined behaviour, if we are lucky the program just crashes
- To avoid this auto_ptr have a special feature: copying them (e.g. copy constructor or assignment operator) sets them to null and copying pointer assumes the ownership of the object

auto_ptr characteristics: example

```
// pV1 points to the created object
std::auto_ptr<Vehicle> pV1(createVehicle());
std::auto_ptr<Vehicle> pV2( pV1 );
/* now pV2 points to the object and pV1 is
null! */
pV1 = pV2;
/* now pV1 points to the object and pV2 is
null! */
```


auto_ptr characteristics -cont.

- If the target auto_ptr holds some object, it is freed
- This copy behaviour means that you can't create an STL container of auto_ptr!
 - Remind: STL containers want objects with normal copy behaviours
 - Modern compilers (with modern STL) issue compile errors

auto_ptr characteristics - cont.

 If you do not want to loose ownership use the const auto_ptr idiom:

it just allows dereferencing

auto_ptr characteristics - cont.

 auto_ptr use delete in its destructor so do NOT use it with dynamically allocated arrays:

```
std::auto_ptr<std::string>
aPS(new std::string[10]);
```

use a vector instead of an array

- use get() to get a pointer to the object managed by auto_ptr, or get 0 if it's pointing to nothing
- use release() to set the auto_ptr internal pointer to null pointer (which indicates it points to no object) without destructing the object currently pointed by the auto_ptr.
- use reset() to deallocate the object pointed and set a new value (it's like creating a new auto_ptr)


```
auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;</pre>
```

- use release() to set the auto_ptr internal pointer to null pointer (which indicates it points to no object) without destructing the object currently pointed by the auto_ptr.
- use reset() to deallocate the object pointed and set a new value (it's like creating a new auto_ptr)


```
auto_ptr<int> auto_pointer (new int);
int * manual_pointer;
*auto_pointer=10;
manual_pointer = auto_pointer.release();
cout << "manual_pointer points to " <<
*manual_pointer << "\n";
// (auto_pointer is now null-pointer auto_ptr)
delete manual_pointer;</pre>
```

 use reset() to deallocate the object pointed and set a new value (it's like creating a new auto_ptr)


```
auto_ptr<int> p;
p.reset (new int);
*p=5;
cout << *p << endl;

p.reset (new int);
*p=10;
cout << *p << endl;</pre>
```

 use reset() to deallocate the object pointed and set a new value (it's like creating a new auto_ptr)

auto_ptr methods - cont.

 operator*() and operator->() have been overloaded and return the element pointed by the auto_ptr object in order to access one of its members.

```
auto_ptr<Car> c(new Car);
c->startEngine();
(*c).getOwner();
```


Scope guard

 Sometime we want to release resources if an exception is thrown, but we do NOT want to release them if no exception is thrown. The "Scope guard" is a variation of RAII

```
• int run () {
    try {
        Foo *d = createAndInit();
        return 0;
    } catch (...) {
        return 1;
    }
}
```


Scope guard

Sometime we want to release resources if an exception is thrown, but we do NOT want to release them if no exception is thrown. The

"Scope guard" is a

Use auto_ptr to guarantee that an exception does not leak the resource.

When we are safe, we release the auto_ptr and return the pointer.

Credits

- These slides are (heavily) based on the material of:
 - Scott Meyers, "Effective C++, 3rd ed."
 - Wikipedia
 - Herb Sutter, "Exceptional C++"
 - David Kieras, University of Michigan