
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

martedì 14 maggio 13

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

Resource Management
Memory, smart pointers and RAII

martedì 14 maggio 13

Resource management

• The most commonly used resource in C++
programs is memory

• there are also file handles, mutexes, database
connections, etc.

• It is important to release a resource after that
it has been used

martedì 14 maggio 13

An example

class Vehicle { ... }; // root class of a hierarchy

Vehicle* createVehicle(); /* return a pointer to root
class but may create any other object in the hierarchy.
The caller MUST delete the returned object */

void f() {
 Vehicle* pV = createVehicle();
 //... use pV
 delete pV;
}

martedì 14 maggio 13

An example

class Vehicle { ... }; // root class of a hierarchy

Vehicle* createVehicle(); /* return a pointer to root
class but may create any other object in the hierarchy.
The caller MUST delete the returned object */

void f() {
 Vehicle* pV = createVehicle();
 //... use pV
 delete pV;
}

If there’s a premature
return or an exception we
may never reach the
delete !

martedì 14 maggio 13

A solution

• Put the resource returned by createVehicle
inside an object whose destructor automatically
release the resource when control leaves f().

• destructor calls are automatic

• With these objects that manage resources:

• resources are acquired and immediately turned over
to resource-managing objects (RAII)

• these objects use their destructors to ensure that
resources are released

martedì 14 maggio 13

RAII
Resource Acquisition Is Initialization

martedì 14 maggio 13

What is RAII

• This technique was invented by Stroustrup to
deal with resource deallocation in C++ and to
write exception-safe code: the only code that
can be guaranteed to be executed after an
exception is thrown are the destructors of
objects residing on the stack.

• This technique allows to release resources
before permitting exceptions to propagate (in
order to avoid resource leaks)

martedì 14 maggio 13

http://en.wikipedia.org/wiki/Exception
http://en.wikipedia.org/wiki/Exception
http://en.wikipedia.org/wiki/Destructor
http://en.wikipedia.org/wiki/Destructor
http://en.wikipedia.org/wiki/Stack_(data_structure)
http://en.wikipedia.org/wiki/Stack_(data_structure)

What is RAII - cont.

• Resources are tied to the lifespan of suitable
objects.
They are acquired during initialization, when
there is no chance of them being used before
they are available.
They are released with the destruction of the
same objects, which is guaranteed to take
place even in case of errors.

martedì 14 maggio 13

RAII example#include <cstdio>
#include <stdexcept> // std::runtime_error

class file {
public:
 file (const char* filename) : file_(std::fopen(filename, "w+")) {
 if (!file_) {
 throw std::runtime_error("file open failure");
 }
 }
 ~file() {
 if (std::fclose(file_)) {
 // failed to flush latest changes.
 // handle it
 }
 }
 void write (const char* str) {
 if (EOF == std::fputs(str, file_)) {
 throw std::runtime_error("file write failure");
 }
 }
private:
 std::FILE* file_;
 // prevent copying and assignment; not implemented
 file (const file &);
 file & operator= (const file &);
};

martedì 14 maggio 13

RAII example#include <cstdio>
#include <stdexcept> // std::runtime_error

class file {
public:
 file (const char* filename) : file_(std::fopen(filename, "w+")) {
 if (!file_) {
 throw std::runtime_error("file open failure");
 }
 }
 ~file() {
 if (std::fclose(file_)) {
 // failed to flush latest changes.
 // handle it
 }
 }
 void write (const char* str) {
 if (EOF == std::fputs(str, file_)) {
 throw std::runtime_error("file write failure");
 }
 }
private:
 std::FILE* file_;
 // prevent copying and assignment; not implemented
 file (const file &);
 file & operator= (const file &);
};

void example_usage() {
 // open file (acquire resource)
 file logfile("logfile.txt");
 logfile.write("hello logfile!");
 // continue using logfile ...
 // throw exceptions or return without
 // worrying about closing the log;
 // it is closed automatically when
 // logfile goes out of scope
}

martedì 14 maggio 13

Smart pointers

martedì 14 maggio 13

What is a smart pointer ?

• In C++, smart pointers are classes that mimic,
by means of operator overloading, the
behaviour of traditional (raw) pointers, (e.g.
dereferencing, assignment) while providing
additional memory management algorithms.

• Old C++98 provided only auto_ptr<>, C++11
introduces many new smart pointers:

• SHould start to use smart pointer whenever
possible, and use “raw” pointers only when
necessary

martedì 14 maggio 13

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Operator_overloading
http://en.wikipedia.org/wiki/Operator_overloading
http://en.wikipedia.org/wiki/Void_pointer
http://en.wikipedia.org/wiki/Void_pointer

Raw vs. smart pointer

• With raw pointers the programmer is in charge
with deleting them:
// Need to create the object to achieve some goal

MyObject* ptr = new MyObject();

ptr->DoSomething();// Use the object in some way.

delete ptr; // Destroy the object. Done with it.

// Wait, what if DoSomething() raises an exception....

• With smart pointers there is need to create the
object, but its destruction is up to the policy
defined by the smart pointer

martedì 14 maggio 13

C++11 smart pointers
• shared_ptr: implements shared ownership. Any number of

these smart pointers jointly own the object. The owned object is
destroyed only when its last owning smart pointer is destroyed.

• weak_ptr: doesn't own an object at all, and so plays no role in
when or whether the object gets deleted. Rather, a weak_ptr
merely observes objects being managed by shared_ptrs, and
provides facilities for determining whether the observed object
still exists or not. C++11's weak_ptrs are used with shared_ptrs.

• unique_ptr: implements unique ownership - only one smart
pointer owns the object at a time; when the owning smart
pointer is destroyed, then the owned object is automatically
destroyed.

• Just use: #include <memory>

martedì 14 maggio 13

shared_ptr

martedì 14 maggio 13

shared_ptr

• std::shared_ptr represents reference-counted
ownership of a pointer. Each copy of the same
shared_ptr owns the same pointer. That
pointer will only be freed if all instances of the
shared_ptr in the program are destroyed.

• Can be used in STL containers: the copied
shared_ptr will increase reference count

martedì 14 maggio 13

http://en.wikipedia.org/wiki/Reference_count
http://en.wikipedia.org/wiki/Reference_count

shared_ptr - example
#include <iostream>
#include <memory>

using namespace std;

class Car {
public:
	 Car(int eng=500) : engine(eng) {}
	 void turnOn() {engineOn=true; cout <<
"Engine on\n";}
	 void turnOff() {engineOn=false; cout
<< "Engine off\n";}
	 int getEngine() {return engine;}
	
private:
	 int engine;
	 bool engineOn {false};
};

int main(int argc, char *argv[]) {
	 std::shared_ptr<Car> p1=make_shared<Car>(1400);
	 // you can use also:
 // std::shared_ptr<Car> p1(new Car(1400));
	 std::shared_ptr<Car> p2 = p1; //Both now own
the memory.
	
	 // call methods of the shared object
	 (*p1).turnOn();
	 p2->turnOff();
	
	 // call methods of the smart pointer
	 cout << p2.use_count() << endl;
	
	 p1.reset(); //Memory still exists, due to p2.
	 cout << "Engine: " << p2->getEngine() << endl;
	 p2.reset(); //Deletes the memory, since no one
else owns the memory.
}

martedì 14 maggio 13

shared_ptr - example
#include <iostream>
#include <memory>

using namespace std;

class Car {
public:
	 Car(int eng=500) : engine(eng) {}
	 void turnOn() {engineOn=true; cout <<
"Engine on\n";}
	 void turnOff() {engineOn=false; cout
<< "Engine off\n";}
	 int getEngine() {return engine;}
	
private:
	 int engine;
	 bool engineOn {false};
};

int main(int argc, char *argv[]) {
	 std::shared_ptr<Car> p1=make_shared<Car>(1400);
	 // you can use also:
 // std::shared_ptr<Car> p1(new Car(1400));
	 std::shared_ptr<Car> p2 = p1; //Both now own
the memory.
	
	 // call methods of the shared object
	 (*p1).turnOn();
	 p2->turnOff();
	
	 // call methods of the smart pointer
	 cout << p2.use_count() << endl;
	
	 p1.reset(); //Memory still exists, due to p2.
	 cout << "Engine: " << p2->getEngine() << endl;
	 p2.reset(); //Deletes the memory, since no one
else owns the memory.
}

•Two references to the
same object

•Counts the number of
references

•Eliminates one of the
references

martedì 14 maggio 13

shared_ptr - example
#include <iostream>
#include <memory>

using namespace std;

class Car {
public:
	 Car(int eng=500) : engine(eng) {}
	 void turnOn() {engineOn=true; cout <<
"Engine on\n";}
	 void turnOff() {engineOn=false; cout
<< "Engine off\n";}
	 int getEngine() {return engine;}
	
private:
	 int engine;
	 bool engineOn {false};
};

int main(int argc, char *argv[]) {
	 std::shared_ptr<Car> p1=make_shared<Car>(1400);
	 // you can use also:
 // std::shared_ptr<Car> p1(new Car(1400));
	 std::shared_ptr<Car> p2 = p1; //Both now own
the memory.
	
	 // call methods of the shared object
	 (*p1).turnOn();
	 p2->turnOff();
	
	 // call methods of the smart pointer
	 cout << p2.use_count() << endl;
	
	 p1.reset(); //Memory still exists, due to p2.
	 cout << "Engine: " << p2->getEngine() << endl;
	 p2.reset(); //Deletes the memory, since no one
else owns the memory.
}

•Two references to the
same object

•Counts the number of
references

•Eliminates one of the
references

Remind to use the compiler switches to activate
C++11, like -std=c++11 -stdlib=libc++

martedì 14 maggio 13

shared_ptr+STL - example
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
#include <memory>

using namespace std;

class Song {
public:
	 Song(string name, string t) : artist(name),
title(t) {}
	 string artist, title;	
};

int main(int argc, char *argv[]) {
	 shared_ptr<Song> p1 = make_shared<Song>("Bob
Dylan", "The Times They Are A Changing");
	 shared_ptr<Song> p2 = make_shared<Song>("Aretha
Franklin", "Bridge Over Troubled Water");
	 shared_ptr<Song> p3 = make_shared<Song>("Francesco
Guccini", "Il vecchio e il bambino");
	 vector<shared_ptr<Song>> v;

	 v.push_back(p1);
	 v.push_back(p2);
	 v.push_back(p3);

	 vector<shared_ptr<Song>> v2;
	 // see slides on lambda functions...
	 remove_copy_if(v.begin(), v.end(),
back_inserter(v2), [] (shared_ptr<Song> s)
	 {
	 return s->artist.compare("Francesco Guccini")
== 0;	 	
	 });
	
	 for_each(v2.begin(), v2.end(), [] (shared_ptr<Song>
s)
	 {
	 cout << s->artist << ": " << s->title << endl;
	 });
	 // see slides on lambda functions...
	 v.pop_back();
	 cout << p1->artist << ": " << p1.use_count() <<
endl;
	 cout << p2->artist << ": " << p2.use_count() <<
endl;
	 cout << p3->artist << ": " << p3.use_count() <<
endl;
}

martedì 14 maggio 13

shared_ptr+STL - example
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
#include <memory>

using namespace std;

class Song {
public:
	 Song(string name, string t) : artist(name),
title(t) {}
	 string artist, title;	
};

int main(int argc, char *argv[]) {
	 shared_ptr<Song> p1 = make_shared<Song>("Bob
Dylan", "The Times They Are A Changing");
	 shared_ptr<Song> p2 = make_shared<Song>("Aretha
Franklin", "Bridge Over Troubled Water");
	 shared_ptr<Song> p3 = make_shared<Song>("Francesco
Guccini", "Il vecchio e il bambino");
	 vector<shared_ptr<Song>> v;

	 v.push_back(p1);
	 v.push_back(p2);
	 v.push_back(p3);

	 vector<shared_ptr<Song>> v2;
	 // see slides on lambda functions...
	 remove_copy_if(v.begin(), v.end(),
back_inserter(v2), [] (shared_ptr<Song> s)
	 {
	 return s->artist.compare("Francesco Guccini")
== 0;	 	
	 });
	
	 for_each(v2.begin(), v2.end(), [] (shared_ptr<Song>
s)
	 {
	 cout << s->artist << ": " << s->title << endl;
	 });
	 // see slides on lambda functions...
	 v.pop_back();
	 cout << p1->artist << ": " << p1.use_count() <<
endl;
	 cout << p2->artist << ": " << p2.use_count() <<
endl;
	 cout << p3->artist << ": " << p3.use_count() <<
endl;
}

X1 X3X2

ptr
ptr
ptr

containers of pointers

ptr
ptr
ptr

A B

martedì 14 maggio 13

shared_ptr: problems

• A problem with reference-counted smart
pointers is that if there is a ring, or cycle, of
objects that have smart pointers to each
other, they keep each other "alive" - they
won't get deleted even if no other objects are
pointing to them from "outside" of the ring.

Shared Ownership with shared_ptr
The shared_ptr class template is a referenced-counted smart pointer; a count is kept of how many smart

pointers are pointing to the managed object; when the last smart pointer is destroyed, the count goes to zero, and the
managed object is then automatically deleted. It is called a "shared" smart pointer because the smart pointers all
share ownership of the managed object - any one of the smart pointers can keep the object in existence; it gets
deleted only when no smart pointers point to it any more. Using these can simplify memory management, as shown
with a little example diagrammed below:

X1 X3X2

ptr
ptr
ptr

containers of pointers

ptr
ptr
ptr

A B

Suppose we need two containers (A and B) of pointers referring to a single set of objects, X1 through X3. Suppose
that if we remove the pointer to one of the objects from one of the containers, we will want to keep the object if the
pointer to it is still in the other container, but delete it if not. Suppose further that at some point we will need to
empty container A or B, and only when both are emptied, we will want to delete the three pointed-to objects.
Suppose further that it is hard to predict in what order we will do any of these operations (e.g. this is part of a game
system where the user's activities determines what will happen). Instead of writing some delicate code to keep track
of all the possibilities, we could use smart pointers in the containers instead of built-in pointers. Then all we have to
do is simply remove a pointer from a container whenever we want, and if it turns out to be the last pointer to an
object, it will get "automagically" deleted. Likewise, we could clear a container whenever we want, and if it has the
last pointers to the objects, then they all get deleted. Pretty neat! Especially when the program is a lot more
complicated!

However, a problem with reference-counted smart pointers is that if there is a ring, or cycle, of objects that have
smart pointers to each other, they keep each other "alive" - they won't get deleted even if no other objects in the
universe are pointing to them from "outside" of the ring. This cycle problem is illustrated in the diagram below that
shows a container of smart pointers pointing to three objects each of which also point to another object with a smart
pointer and form a ring. If we empty the container of smart pointers, the three objects won't get deleted, because
each of them still has a smart pointer pointing to them.

sp

sp

sp

sp
sp
sp

container of smart pointers objects pointing to another
object with a smart pointer

C++11 includes a solution: "weak" smart pointers: these only "observe" an object but do not influence its lifetime.
A ring of objects can point to each other with weak_ptrs, which point to the managed object but do not keep it in
existence. This is shown in the diagram below, where the "observing" relations are shown by the dotted arrows.

2

martedì 14 maggio 13

shared_ptr: problems - example
class B;
class A {
public:
	 A() : m_sptrB(nullptr) { };
	 ~A() {
	 cout<<" A is destroyed"<<endl;
	 }
	 shared_ptr m_sptrB;
};

class B {
public:
	 B() : m_sptrA(nullptr) { };
	 ~B() {
	 cout<<" B is destroyed"<<endl;
	 }
	 shared_ptr<A> m_sptrA;
};

	 void main() {
	 shared_ptr sptrB(new B);
	 shared_ptr<A> sptrA(new A);
	 sptrB->m_sptrA = sptrA;
	 sptrA->m_sptrB = sptrB;
	 }

martedì 14 maggio 13

shared_ptr: problems - example
class B;
class A {
public:
	 A() : m_sptrB(nullptr) { };
	 ~A() {
	 cout<<" A is destroyed"<<endl;
	 }
	 shared_ptr m_sptrB;
};

class B {
public:
	 B() : m_sptrA(nullptr) { };
	 ~B() {
	 cout<<" B is destroyed"<<endl;
	 }
	 shared_ptr<A> m_sptrA;
};

	 void main() {
	 shared_ptr sptrB(new B);
	 shared_ptr<A> sptrA(new A);
	 sptrB->m_sptrA = sptrA;
	 sptrA->m_sptrB = sptrB;
	 }

martedì 14 maggio 13

weak_ptr

martedì 14 maggio 13

weak_ptr: helping shared_ptr

• std::weak_ptr: a weak pointer provides sharing semantics
and not owning semantics.

• This means a weak pointer can share a resource held by a
shared_ptr.

• So to create a weak pointer, somebody should already own
the resource which is nothing but a shared pointer.

• To break up cycles, weak_ptr can be used to access the
stored object. The stored object will be deleted if the only
references to the object are weak_ptr references.

• weak_ptr therefore does not ensure that the object will
continue to exist, but it can ask for the resource.

martedì 14 maggio 13

weak_ptr: how to use it
• A weak pointer does not allow normal interfaces supported by a

pointer, like calling *, ->. Because it is not the owner of the
resource and hence it does not give any chance for the programmer
to mishandle it.

• Create a shared_ptr out of a weak _ptr and use it. Because
this makes sure that the resource won't be destroyed while using by
incrementing the strong reference count.

• As the reference count is incremented, it is sure that the count
will be at least 1 till you complete using the shared_ptr created
out of the weak_ptr. Otherwise what may happen is while using
the weak_ptr, the resource held by the shared_ptr goes out of
scope and the memory is released which creates chaos.

• To get a shared_ptr from a weak_ptr call lock() or directly
casting the weak_ptr to shared_ptr.

martedì 14 maggio 13

weak_ptr and shared_ptr

• If the container of smart pointers is emptied, the three objects in the ring will get
automatically deleted because no other smart pointers are pointing to them; like
raw pointers, the weak pointers don't keep the pointed-to object "alive”.

• The cycle problem is solved. But unlike raw pointers, the weak pointers "know"
whether the pointed-to object is still there or not and can be interrogated about
it, making them much more useful than a simple raw pointer would be.

wp

wp

wp

sp
sp
sp

container of smart pointers objects pointing to another
object with a weak pointer

If the container of smart pointers is emptied, the three objects in the ring will get automatically deleted because no
other smart pointers are pointing to them; like raw pointers, the weak pointers don't keep the pointed-to object
"alive." The cycle problem is solved. But unlike raw pointers, the weak pointers "know" whether the pointed-to
object is still there or not and can be interrogated about it, making them much more useful than a simple raw pointer
would be. How is this done?

How they work
A lot of effort over several years by the Boost group (boost.org) went into making sure the C++11 smart pointers

are very well-behaved and as foolproof as possible, and so the actual implementation is very subtle. But a simplified
sketch of the implementation helps to understand how to use these smart pointers. Below is a diagram illustrating in
simplified form what goes on under the hood of shared_ptr and weak_ptr.

sp1

sp2

sp3

wp1 wp2

shared_ptrs

weak_ptrs

pointer
shared count: 3
weak count: 2

manager object
managed object

The process starts when the managed object is dynamically allocated, and the first shared_ptr (sp1) is created
to point to it; the shared_ptr constructor creates a manager object (dynamically allocated). The manager object
contains a pointer to the managed object; the overloaded member functions like shared_ptr::operator-> access
the pointer in the manager object to get the actual pointer to the managed object.1 The manager object also contains
two reference counts: The shared count counts the number of shared_ptrs pointing to the manager object, and the
weak count counts the number of weak_ptrs pointing to the manager object. When sp1 and the manager object are
first created, the shared count will be 1, and the weak count will be 0.

If another shared_ptr (sp2) is created by copy or assignment from sp1, then it also points to the same manager
object, and the copy constructor or assignment operator increments the shared count to show that 2 shared_ptrs
are now pointing to the managed object. Likewise, when a weak pointer is created by copy or assignment from a
shared_ptr or another weak_ptr for this object, it points to the same manager object, and the weak count is
incremented. The diagram shows the situation after three shared_ptrs and two weak_ptrs have been created to
point to the same object.

3

1 To keep the language from getting too clumsy, we'll say that a smart pointer is pointing to the managed object if it is pointing to
the manager object that actually contains the pointer to the managed object.

martedì 14 maggio 13

weak_ptr: example
#include <iostream>
#include <memory>
using namespace std;

int main() {
	 std::shared_ptr<int> p1(new int(5));
	 std::weak_ptr<int> wp1 = p1; //p1 owns the memory.
	
	 { // scope of p2
	 std::shared_ptr<int> p2 = wp1.lock(); //Now p1 and p2 own the memory.
	 if(p2) //Always check to see if the memory still exists
	 {
	 //Do something with p2
	 }
	 } //p2 is destroyed. Memory is owned by p1.
	
	 p1.reset(); //Memory is deleted.
	
	 std::shared_ptr<int> p3 = wp1.lock(); //Memory is gone, so we get an empty shared_ptr.
	 if(p3)
	 {
	 //Will not execute this.
	 }
}

martedì 14 maggio 13

weak_ptr: how it works

• Whenever a shared_ptr is destroyed, or reassigned to point to a different object, the shared_ptr destructor
or assignment operator decrements the shared count.

• Similarly, destroying or reassigning a weak_ptr will decrement the weak count.

• When the shared count reaches zero, the shared_ptr destructor deletes the managed object and sets the
pointer to 0.

• If the weak count is also zero, then the manager object is deleted also, and nothing remains.

• But if the weak count is greater than zero, the manager object is kept. If the weak count is decremented to
zero, and the shared count is also zero, the weak_ptr destructor deletes the manager object.

• Thus the managed object stays around as long as there are shared_ptrs pointing to it, and the manager object
stays around as long as there are either shared_ptrs or weak_ptrs referring to it.

wp

wp

wp

sp
sp
sp

container of smart pointers objects pointing to another
object with a weak pointer

If the container of smart pointers is emptied, the three objects in the ring will get automatically deleted because no
other smart pointers are pointing to them; like raw pointers, the weak pointers don't keep the pointed-to object
"alive." The cycle problem is solved. But unlike raw pointers, the weak pointers "know" whether the pointed-to
object is still there or not and can be interrogated about it, making them much more useful than a simple raw pointer
would be. How is this done?

How they work
A lot of effort over several years by the Boost group (boost.org) went into making sure the C++11 smart pointers

are very well-behaved and as foolproof as possible, and so the actual implementation is very subtle. But a simplified
sketch of the implementation helps to understand how to use these smart pointers. Below is a diagram illustrating in
simplified form what goes on under the hood of shared_ptr and weak_ptr.

sp1

sp2

sp3

wp1 wp2

shared_ptrs

weak_ptrs

pointer
shared count: 3
weak count: 2

manager object
managed object

The process starts when the managed object is dynamically allocated, and the first shared_ptr (sp1) is created
to point to it; the shared_ptr constructor creates a manager object (dynamically allocated). The manager object
contains a pointer to the managed object; the overloaded member functions like shared_ptr::operator-> access
the pointer in the manager object to get the actual pointer to the managed object.1 The manager object also contains
two reference counts: The shared count counts the number of shared_ptrs pointing to the manager object, and the
weak count counts the number of weak_ptrs pointing to the manager object. When sp1 and the manager object are
first created, the shared count will be 1, and the weak count will be 0.

If another shared_ptr (sp2) is created by copy or assignment from sp1, then it also points to the same manager
object, and the copy constructor or assignment operator increments the shared count to show that 2 shared_ptrs
are now pointing to the managed object. Likewise, when a weak pointer is created by copy or assignment from a
shared_ptr or another weak_ptr for this object, it points to the same manager object, and the weak count is
incremented. The diagram shows the situation after three shared_ptrs and two weak_ptrs have been created to
point to the same object.

3

1 To keep the language from getting too clumsy, we'll say that a smart pointer is pointing to the managed object if it is pointing to
the manager object that actually contains the pointer to the managed object.

shared_ptr creates the manager object that contains a
pointer to the managed object
The manager object counts the references to the
managed object

martedì 14 maggio 13

no silver bullet
• You can only use these smart pointers to refer to objects allocated with new and

that can be deleted with delete. No pointing to objects on the function call stack!

• If you want to get the full benefit of smart pointers, your code should avoid using
raw pointers to refer to the same objects; otherwise it is too easy to have problems
with dangling pointers or double deletions.

• Leave the built-in pointers inside the smart pointers and use only the smart
pointers.

• You must ensure that there is only one manager object for each managed object. You
do this by writing your code so that when an object is first created, it is immediately
given to a shared_ptr to manage:

void main() {
 int* p = new int;
 shared_ptr<int> sptr1(p);
 shared_ptr<int> sptr2(p);
}

Crashes as soon as sptr2 goes out
of scope...
p was destroyed when sptr1 went
out of scope !

martedì 14 maggio 13

unique_ptr

martedì 14 maggio 13

unique_ptr
• Exclusive ownership semantics, i.e., at any point

of time, the resource is owned by only one
unique_ptr. When unique_ptr goes out of
scope, the resource is released.

• Solves the problem of transfer of ownership that
are present in the (deprecated) auto_ptr

• copy constructor and assignment operator are
declared as private

• Can be used in STL containers and algorithms

martedì 14 maggio 13

unique_ptr vs. auto_ptr
• Consider unique_ptr an improved version of auto_ptr. It has an almost identical interface:

• #include <utility>
using namespace std;
unique_ptr<int> up1; //default construction
unique_ptr<int> up2(new int(9)); //initialize with pointer
*up2 = 23; //dereference
up2.reset(); //reset

• The main difference between auto_ptr and unique_ptr is visible in move operations. While auto_ptr
sometimes disguises move operations as copy-operations, unique_ptr will not let you use copy semantics
when you're actually moving an lvalue unique_ptr:

• auto_ptr<int> ap1(new int);
auto_ptr<int> ap2=ap1; // OK but unsafe: move
 // operation in disguise
unique_ptr<int> up1(new int);
unique_ptr<int> up2=up1; // compilation error: private
 // copy ctor inaccessible

Instead, you must call move() when moving operation from an lvalue:
unique_ptr<int> up2 = std::move(up1);//OK

martedì 14 maggio 13

unique_ptr +STL

• You can fill a Standard Container with
unique_ptrs that own objects, and the
ownership then effectively resides in the
container.

• If you erase an item in the container, you are
destroying the unique_ptr, which will then
delete the object it is pointing to.
std::vector<unique_ptr<Thing>> v;
...
if(v[3]) // check that v[3] still owns an object
 v[3]->foo();!// tell object pointed to by v[3] to foo

martedì 14 maggio 13

unique_ptr and RAII

• Reconsider the f() function using unique_ptr:

void f() {

 std::unique_ptr<Vehicle>pV(createVehicle());

 // use pV as before...

} /* the magic happens here: automatically
deletes pV via the destructor of unique_ptr,
called because it’s going out of scope */

martedì 14 maggio 13

unique_ptr: another example

• In general here’s how to rewrite unsafe code
in safe code:

// Original code
void f() {
 T* pt(new T);
 /*...more code...*/
 delete pt;
}

//Safe code, with auto_ptr
void f() {
 unique_ptr<T> pt(new T);
 /*...more code...*/
} /* pt's destructor is called
as it goes out of scope, and
the object is deleted
automatically */

martedì 14 maggio 13

Which smart pointer
should we use ?

martedì 14 maggio 13

Some guidelines

• It purely depends upon how you want to own
a resource?

• If shared ownership is needed then go for
shared_ptr, otherwise unique_ptr (i.e.
unique_ptr is your default choice).

• If cyclic references are unavoidable in shared
ownership, use weak_ptr to give one or
more of the owners a weak reference to
another shared_ptr.

martedì 14 maggio 13

Boost smart pointers

martedì 14 maggio 13

Boost smart pointers

• The Boost libraries provide a set of alternative
smart pointers

• many have been selected for introduction in
C++11... use the Boost library if your
compiler still does not support C++11
smart pointers

• designed to complement auto_ptr

martedì 14 maggio 13

Boost smart pointers
• Four of the Boost smart pointers:

• scoped_ptr defined in <boost/scoped_ptr.hpp>
Simple sole ownership of single objects. Non-copyable.

• scoped_array defined in <boost/scoped_array.hpp>
Simple sole ownership of arrays. Non-copyable.

• shared_ptr defined in <boost/shared_ptr.hpp>
Object ownership shared among multiple pointers. std::shared_ptr represents reference
counted ownership of a pointer. Each copy of the same shared_ptr owns the same
pointer. That pointer will only be freed if all instances of the shared_ptr in the program
are destroyed.

• weak_ptr defined in <boost/weak_ptr.hpp>
Non-owning observers of an object owned by shared_ptr. It is designed for use with
shared_ptr.

martedì 14 maggio 13

http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp

Boost smart pointers
• Four of the Boost smart pointers:

• scoped_ptr defined in <boost/scoped_ptr.hpp>
Simple sole ownership of single objects. Non-copyable.

• scoped_array defined in <boost/scoped_array.hpp>
Simple sole ownership of arrays. Non-copyable.

• shared_ptr defined in <boost/shared_ptr.hpp>
Object ownership shared among multiple pointers. std::shared_ptr represents reference
counted ownership of a pointer. Each copy of the same shared_ptr owns the same
pointer. That pointer will only be freed if all instances of the shared_ptr in the program
are destroyed.

• weak_ptr defined in <boost/weak_ptr.hpp>
Non-owning observers of an object owned by shared_ptr. It is designed for use with
shared_ptr.

Similar to unique_ptr
(but no transfer of

ownership)

martedì 14 maggio 13

http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp

Boost smart pointers
• Four of the Boost smart pointers:

• scoped_ptr defined in <boost/scoped_ptr.hpp>
Simple sole ownership of single objects. Non-copyable.

• scoped_array defined in <boost/scoped_array.hpp>
Simple sole ownership of arrays. Non-copyable.

• shared_ptr defined in <boost/shared_ptr.hpp>
Object ownership shared among multiple pointers. std::shared_ptr represents reference
counted ownership of a pointer. Each copy of the same shared_ptr owns the same
pointer. That pointer will only be freed if all instances of the shared_ptr in the program
are destroyed.

• weak_ptr defined in <boost/weak_ptr.hpp>
Non-owning observers of an object owned by shared_ptr. It is designed for use with
shared_ptr.

Included in C++11

Similar to unique_ptr
(but no transfer of

ownership)

martedì 14 maggio 13

http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp

auto_ptr

deprecate |ˈdepriˌkāt|
verb [with obj.]
1 express disapproval of: (as adj. deprecating) : he sniffed in a deprecating way.

martedì 14 maggio 13

auto_ptr

• auto_ptr is a pointer-like object (a smart
pointer) whose destructor automatically calls
delete on what it points to

• it’s in the C++ standard library:
#include <memory>

• auto_ptr has been deprecated in C++11:
use Boost or the new C++11 smart pointers

martedì 14 maggio 13

auto_ptr: an example

• Reconsider the f() function using auto_ptr:

void f() {

 std::auto_ptr<Vehicle> pV(createVehicle());

 // use pV as before...

} /* the magic happens here: automatically
deletes pV via the destructor of auto_ptr,
called because it’s going out of scope */

martedì 14 maggio 13

auto_ptr: another example

• In general here’s how to rewrite unsafe code
in safe code:

// Original code
void f() {
 T* pt(new T);
 /*...more code...*/
 delete pt;
}

//Safe code, with auto_ptr
void f() {
 auto_ptr<T> pt(new T);
 /*...more code...*/
} /* pt's destructor is called
as it goes out of scope, and
the object is deleted
automatically */

martedì 14 maggio 13

auto_ptr characteristics

• Since auto_ptr automatically deletes what it
points to when it is destroyed, there should not
be two auto_ptr pointing to an object

• or the object may be deleted twice: it’s an
undefined behaviour, if we are lucky the program
just crashes

• To avoid this auto_ptr have a special feature:
copying them (e.g. copy constructor or assignment
operator) sets them to null and copying pointer
assumes the ownership of the object

martedì 14 maggio 13

auto_ptr characteristics: example

// pV1 points to the created object
std::auto_ptr<Vehicle> pV1(createVehicle());

std::auto_ptr<Vehicle> pV2(pV1);
/* now pV2 points to the object and pV1 is
null ! */

pV1 = pV2;
/* now pV1 points to the object and pV2 is
null ! */

martedì 14 maggio 13

auto_ptr characteristics - cont.

• If the target auto_ptr holds some object, it is
freed

• This copy behaviour means that you can’t
create an STL container of auto_ptr !

• Remind: STL containers want objects with
normal copy behaviours

• Modern compilers (with modern STL) issue
compile errors

martedì 14 maggio 13

auto_ptr characteristics - cont.

• If you do not want to loose ownership use the
const auto_ptr idiom:
const auto_ptr<T> pt1(new T);
 // making pt1 const guarantees that pt1 can
 // never be copied to another auto_ptr, and
 // so is guaranteed to never lose ownership

 auto_ptr<T> pt2(pt1); // illegal
 auto_ptr<T> pt3;
 pt3 = pt1; // illegal
 pt1.release(); // illegal
 pt1.reset(new T); // illegal

• it just allows dereferencing

martedì 14 maggio 13

auto_ptr characteristics - cont.

• auto_ptr use delete in its destructor so do
NOT use it with dynamically allocated arrays:

std::auto_ptr<std::string>
aPS(new std::string[10]);

• use a vector instead of an array

martedì 14 maggio 13

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

martedì 14 maggio 13

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;

martedì 14 maggio 13

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;

auto_ptr<int> auto_pointer (new int);
int * manual_pointer;
*auto_pointer=10;
manual_pointer = auto_pointer.release();
cout << "manual_pointer points to " <<
*manual_pointer << "\n";
// (auto_pointer is now null-pointer auto_ptr)
delete manual_pointer;

martedì 14 maggio 13

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;

auto_ptr<int> auto_pointer (new int);
int * manual_pointer;
*auto_pointer=10;
manual_pointer = auto_pointer.release();
cout << "manual_pointer points to " <<
*manual_pointer << "\n";
// (auto_pointer is now null-pointer auto_ptr)
delete manual_pointer;

auto_ptr<int> p;
p.reset (new int);
*p=5;
cout << *p << endl;

p.reset (new int);
*p=10;
cout << *p << endl;

martedì 14 maggio 13

auto_ptr methods - cont.

• operator*() and operator->() have been
overloaded and return the element pointed by
the auto_ptr object in order to access one of
its members.

auto_ptr<Car> c(new Car);
c->startEngine();
(*c).getOwner();

martedì 14 maggio 13

Scope guard

• Sometime we want to release resources if an
exception is thrown, but we do NOT want to
release them if no exception is thrown. The
“Scope guard” is a variation of RAII

• Foo* createAndInit() {
 Foo* f = new Foo;
 auto_ptr<Foo> p(f);
 init(f); // may throw
 // exception
 p.release();
 return f;
}

• int run () {
 try {
 Foo *d = createAndInit();
 return 0;
 } catch (...) {
 return 1;
 }
}

martedì 14 maggio 13

Scope guard

• Sometime we want to release resources if an
exception is thrown, but we do NOT want to
release them if no exception is thrown. The
“Scope guard” is a variation of RAII

• Foo* createAndInit() {
 Foo* f = new Foo;
 auto_ptr<Foo> p(f);
 init(f); // may throw
 // exception
 p.release();
 return f;
}

• int run () {
 try {
 Foo *d = createAndInit();
 return 0;
 } catch (...) {
 return 1;
 }
}

Use auto_ptr to guarantee
that an exception does not
leak the resource.

When we are safe, we release
the auto_ptr and return the
pointer.

martedì 14 maggio 13

Credits

• These slides are (heavily) based on the material of:

• Scott Meyers, “Effective C++, 3rd ed.”

• Wikipedia

• Herb Sutter, “Exceptional C++”

• David Kieras, University of Michigan

martedì 14 maggio 13

